Dark nights reverse metabolic disruption caused by dim light at night.
نویسندگان
چکیده
OBJECTIVE The increasing prevalence of obesity and related metabolic disorders coincides with increasing exposure to light at night. Previous studies report that mice exposed to dim light at night (dLAN) develop symptoms of metabolic syndrome. This study investigated whether mice returned to dark nights after dLAN exposure recover metabolic function. DESIGN AND METHODS Male Swiss-Webster mice were assigned to either: standard light-dark (LD) conditions for 8 weeks (LD/LD), dLAN for 8 weeks (dLAN/dLAN), LD for 4 weeks followed by 4 weeks of dLAN (LD/dLAN), and dLAN for 4 weeks followed by 4 weeks of LD (dLAN/LD). RESULTS After 4 weeks in their respective lighting conditions both groups initially placed in dLAN increased body mass gain compared to LD mice. Half of the dLAN mice (dLAN/LD) were then transferred to LD and vice versa (LD/dLAN). Following the transfer dLAN/dLAN and LD/dLAN mice gained more weight than LD/LD and dLAN/LD mice. At the conclusion of the study dLAN/LD mice did not differ from LD/LD mice with respect to weight gain and had lower fat pad mass compared to dLAN/dLAN mice. Compared to all other groups dLAN/dLAN mice decreased glucose tolerance as indicated by an intraperitoneal glucose tolerance test at week 7, indicating that dLAN/LD mice recovered glucose metabolism. dLAN/dLAN mice also increased MAC1 mRNA expression in peripheral fat as compared to both LD/LD and dLAN/LD mice, suggesting peripheral inflammation is induced by dLAN, but not sustained after return to LD. CONCLUSION These results suggest that re-exposure to dark nights ameliorates metabolic disruption caused by dLAN exposure.
منابع مشابه
Dim light at night disrupts molecular circadian rhythms and increases body weight.
With the exception of high latitudes, life has evolved under bright days and dark nights. Most organisms have developed endogenously driven circadian rhythms that are synchronized to this daily light/dark cycle. In recent years, humans have shifted away from the naturally occurring solar light cycle in favor of artificial and sometimes irregular light schedules produced by electric lighting. Ex...
متن کاملExercise attenuates the metabolic effects of dim light at night.
Most organisms display circadian rhythms that coordinate complex physiological and behavioral processes to optimize energy acquisition, storage, and expenditure. Disruptions to the circadian system with environmental manipulations such as nighttime light exposure alter metabolic energy homeostasis. Exercise is known to strengthen circadian rhythms and to prevent weight gain. Therefore, we hypot...
متن کاملExposure to dim light at night during early development increases adult anxiety-like responses.
Early experiences produce effects that may persist throughout life. Therefore, to understand adult phenotype, it is important to investigate the role of early environmental stimuli in adult behavior and health. Artificial light at night (LAN) is an increasingly common phenomenon throughout the world. However, animals, including humans, evolved under dark night conditions. Many studies have reve...
متن کاملDim nighttime illumination alters photoperiodic responses of hamsters through the intergeniculate leaflet and other photic pathways.
In mammals, light entrains the central pacemaker within the suprachiasmatic nucleus (SCN) through both a direct neuronal projection from the retina and an indirect projection from the intergeniculate leaflet (IGL) of the thalamus. Although light comparable in intensity to moonlight is minimally effective at resetting the phase of the circadian clock, dimly lit and completely dark nights are nev...
متن کاملDim light at night interferes with the development of the short-day phenotype and impairs cell-mediated immunity in Siberian hamsters (Phodopus sungorus).
Winter is a challenging time to survive and breed outside of the tropics. Animals use day length (photoperiod) to regulate seasonally appropriate adaptations in anticipation of challenging winter conditions. The net result of these photoperiod-mediated adjustments is enhanced immune function and increased survival. Thus, the ability to discriminate day length information is critical for surviva...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Obesity
دوره 21 6 شماره
صفحات -
تاریخ انتشار 2013